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ABSTRACT
Room clearing, in which building surveillance is conducted to 
search for criminals, continues to be a dangerous and difficult 
problem in urban settings, for both the military as well as for 
police.  In a typical setting, an unknown number of hostile forces 
may be located in a building, and they may be armed.  
Furthermore, there may be innocent civilians.  The goal of the 
friendly units is to enter the room and secure it, but without loss 
of life of friendly forces, hostile forces, and most especially of 
innocent civilians.  It would be beneficial to allow robots to be a 
part of the friendly team, however it is very challenging to have 
robots that do not either slow down or obstruct their human 
teammate.  This is especially difficult since nearly all robots in use 
by the military and police today are tele-operated. In this paper, 
we describe work we have developed in cooperation with the 
army, for the room clearing domain.  We constructed an algorithm 
whereby multiple agents, in the form of robots, can accomplish a 
room clearing task.  We augmented the agent algorithms to 
introduce Adjustable Autonomy, allowing cooperation with 
humans.  We describe simulated results of the algorithm on 
building maps, and furthermore we describe how we intend to 
next conduct hardware tests, and eventual plans to field the 
system.  This agent-based solution has great potential to increase 
the acceptance and leverage of robotics in complex environments.  

Categories and Subject Descriptors
I.2.9 [Robotics]: Commercial Robots and Applications  

General Terms
Algorithms, Human Factors 

Keywords
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1. INTRODUCTION 
Room clearing continues to be a difficult problem in urban 
settings, for both the military as well as for police [Department of 
Army 1979].  In a typical setting, an unknown number of hostile 
forces may be located in a building, and they may be armed.  
Furthermore, there may be innocent civilians.  The goal of the 

friendly units is to enter the room and secure it, but without loss 
of life of friendly forces, hostile forces, and most especially 
innocent civilians.  

At present, room clearing tasks are performed by human teams 
only.  As part of a research effort called CHAMP (Coordinating 
with Humans by Adjustable-autonomy for Multirobot Pursuit), 
Aptima has constructed and simulated a method of coordinating 
mixed teams, consisting of humans and robots, in order to 
perform room clearing tasks.  There are several challenges to this 
task.  First, the robots and the robot sensors need to be chosen.  
Which sensors are chosen (laser, IR, RF) determines the 
capabilities of the robots.  Second, an exploration algorithm for a 
multirobot team needs to be established, which guarantees that the 
room is explored.  Third, human and robot capabilities need to be 
evaluated, and it needs to be determined how to best use the 
robots in cooperation with humans for room clearing.   

Figure 1 CHAMP architecture 
Due to the recent work of researchers in the field of robotics and 
artificial intelligence, there are promising opportunities for the 
incorporation of semi-autonomous robotic entities within the 
small-unit tactical team that may positively impact the day to day 
effectiveness of the team. The future of Stability, Security, 
Transition, and Reconstruction (SSTR), Fixed Site Security 
(FSS), Cordon & Search (C&S), and Close Quarter Combat 
(CQC) include a limited number of human ground forces 
augmented by a team of robots capable of autonomous and 
coordinated action. To achieve this vision, Aptima along with 
Imprimis, Inc., acting as a Subject Matter Expert (SME), have 
developed a prototype system for Coordinating with Humans by 
Adjustable-autonomy for Multirobot Pursuit. 
Figure 1 above shows the major technologies that were used in 
developing the CHAMP prototype. The robot teams are controlled 
by a distributed optimization algorithm, for the distributed 
framework we selected a Multiagent Markov Decision Process 
(MMDP). Adjustable Autonomy allows the degree of automated 
control between the human and robot to be dynamic. The 
environment was developed using knowledge elicitation sessions 
with subject matter experts (SMEs) and guided the concept of 
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operations for the prototype. The goal for the first phase of the 
project, reported on in this paper, was to simulate simple 
scenarios, and scale in complexity in later phases.  Thus, we
assume a map of the building is known to the robots. 

The CHAMP approach created a simulated team of robots 
designed to traverse and cover all necessary terrains of the indoor 
environment while collaborating and communicating with each 
other as well as a human-in-the-loop. In addition, CHAMP 
allowed for command and status updates from/to human users, to 
allow both an understanding of the multirobot team’s actions and 
a mechanism for adjusting them.  The CHAMP approach 
leveraged Adjustable Autonomy in order to allow the 
coordination of the robotic team to become more dynamic and 
adjust to the goals, demands, and constraints of the current 
situation as it unfolds. Consequently, CHAMP introduces 
distributed control strategies that are not static and singular, but 
rather are represented by control policies that vary over time and 
circumstances. By casting the human-robot interaction problem as 
a problem of adjusting autonomy between human-automation 
links, we are able to have the robot team choose how to explore 
the map or allow the human to direct exploration. In determining 
the coordination plan, the robots reason about unexplored areas 
and patrol known areas while keeping the other teammates 
(human or robot) in sight.
In this paper, we describe the details of the CHAMP approach.  
This involves the construction of the MMDP and the 
implementation of  Adjustable Autonomy.  It also includes the 
construction of a simulation environment for the algorithms using 
the Player/Stage robot simulation tool, the construction and 
parsing of maps to run the simulation, and the evaluation of the 
results of our algorithms based on the maps.  Finally, we discuss 
hardware that we have acquired and instrumented, and a plan for 
commercialization of the eventual resulting product. 
Before continuing, we want to first identify some aspects of 
CHAMP’s industrial relevance, as the insights we gained from 
customer calls may be of interest to the community: 

Importance:  The room clearing task is considered high 
priority for the military as well as for police forces.  
Furthermore, the cooperative human-robot team 
algorithms can be expanded to a range of diverse 
domains involving humans and robots, including rescue  
scenarios and exploration scenarios. 

Rationale:  An agent-based approach to controlling 
robots is a natural fit.  Furthermore, we can integrate 
research from the agent literature, including Multi-agent 
Markov Decision Processes, literature on Adjustable 
Autonomy, and pursuit-evasion literature.

Barriers:  Customer enthusiasm is certainly not a 
barrier.  As our customer told us in our first customer 
call, “If you build something we’ll field it tomorrow”.  
Rather, it’s the sheer complexity of the problem.  This is 
why we think it wise to start with simpler models 
containing more centralization and more certainty, then 
to expand to more uncertain models.

Financial:  Later in the paper we will provide an 
overview of specific market estimates.  We reported on 
this information to the army.  Although it is difficult to 
provide exact figures for specific markets, we anticipate 

a large amount of interest provided we demonstrate 
feasibility in hardware (interest for simulation results is 
currently high, but is more subject to change).  The key 
challenge was to obtain hardware within development 
budgets, but which can also demonstrate agent 
algorithms.  Fortunately, options are increasing in 
quantity, quality, and affordability for both robots and 
robot sensors.  We feel that the Create platform from 
iRobot provides a nice tradeoff of features for expense.

2. RELATED WORK 
Our problem is similar to the “pursuit-evasion” problem in the 
literature [Parsons, 1976].  In this problem, an intruder hides and 
must be found by a pursuer.  The problem can be formulated as a 
graph, where pursuers and evaders are located at vertices and 
move along the edges at each step, and there is zero visibility . It 
can also be formulated as a search through a polygon region 
[Suzuki & Yamashita, 1992].    
In the graph-search case, where adjacent nodes are visible, Isler et 
al show that the intruder can be caught by multiple pursuers with 
high probability (Isler et al, 2004).  In recent work, Borie et al 
build upon prior solutions where all edge widths are assumed to 
be one, and generalize the results to graphs with unit-width 
arbitrary length [Borie, 2009].   Additional graph-theoretic 
approaches are numerous, including [Bienstock et al, 1991] and 
[Lapaugh, 1993].  The search of a polygon region has inspired 
approaches in the field of robotics. Some work is concerned with 
robots with a detection beam, monitoring an exit [Gerkey et al, 
2004], [Lee et al, 2000].  
The work most similar to ours is Pellier and Fiorino, in which the 
authors define an approach in a simulated 2D polygon 
environment where robots are assumed to have omni-directional 
sensors exploring an unknown environment [Pellier & Fiorino, 
2005].  The authors construct an algorithm, using a construct 
called critical points , whereby a robot team explores the area, and 
robots are added to the team until it can be assured that any 
evader is found.  In contrast to this work, we assume a small 
number of robots on our team, as will be shown in the next 
section. 

3. PROBLEM ENVIRONMENT 
The full problem is somewhat difficult for a graph-theoretic 
technique.  If one were to represent the complete problem as a 
graph, each pixel would represent a graph vertex.  Furthermore, 
visibility would not be limited to adjacent graph nodes, rather, it 
would be determined by the location of the obstacles.  Thus 
visibility rules would differ for each map.  The resulting graph 
problem is intractable. 
In CHAMP, we find a meaningful subgraph that captures the 
important elements of the full map.  We do this by leveraging 
critical points.  We begin with an empty graph, G=(V,E).  The 
map is examined for vertices (intersections of lines on the graph).  
A vertex is determined to be critical if and only if the angle 
formed by its adjacent edges is greater than .  Each of these 
critical vertices of the map are added to the graph G.  It can be 
proved that all reachable areas on the map can be viewed from 
some critical vertex. 
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Once all the vertices are added to G, we examine them.  For each 
critical vertex, we examine which other critical vertices are 
reachable in a straight line, without encountering a barrier.  For 
each vertex u, for each vertex v that is reachable from it, we add 
edge (u,v) to G. 

4. MMDP FRAMEWORK 
We solve the problem described above by using the graph to form 
an MMDP [Boutilier, 1996].  Below we describe both an MMDP 
and our implementation of it.  We defined the MMDP is as tuple 
<Ag,S,A,P, R,T> where: 

Ag is a finite set of agents indexed 1..n

S = <S1,S2,…> is the state space.  A joint state is a
finite set of states, one state for each agent.  That is, 
agent 1’s state is in S1, agent 2’s state is in S2, etc.  The 
state space S is specified by all combinations of the 
individual robot states. For this project, we consider a 
robot’s state its location. In order to limit the size of the 
state space, only the “critical points” on the map were 
considered. Thus a state such as <1,3,5> would mean 
that the first robot is at location 1, the second robot is at 
location 3, and the third robot is at location 5. The 
benefit of the critical point framework is that every 
point on the map is visible from at least one of the 
critical points. 

A = <A1,A2…>  is the action space.  A joint action is a 
finite set of actions, one action for each agent.  Thus, 
agent 1 takes an action a1, selected from the set of 
possible actions A1.  Agent 2 takes action a2, etc.  All 
actions are taken simultaneously.  We considered robot 
movement to be the action.  An example action is
<MoveToLocation2, Stay, Stay>, stating that robot 1 
moves to location 2 and the other two robots stay in 
place. 

P = SxAxS is the probability matrix governing state 
changes.  For example, if the state is <1,3,5>, as 
described above, and the action is <MoveToLocation2, 
Stay, Stay>, the probability matrix might say that there 
is a 90% chance that robot 1 moves to location 2, and a 
10% chance that it fails, while there is a 100% chance 
that robot 2 and robot 3 stay in the same place. 

R = SxA -> R is the reward for being in joint state S 
and taking joint action A.  Further description is below. 

T is the horizon of the problem. 
An MMDP can be viewed as having the same transition rules as n
separate MDPs, where n is the number of agents.  Each agent has 
its own set of states, and its own defined transition function.  
Rewards, however, are joint, a joint reward is received for the 
state of all the agents.  In order to enforce a desirable property, 
that only one robot be allowed to move at a time, we assigned an
infinite negative reward for joint actions where more than one 
robot moves to a different location on the same step. 
In an MMDP model, state is fully observable.  Thus, each agent 
can fully observe its own state, as well as the states of the other 
agents (after reviewing our robots and this problem, we found it 
most realistic to assume full communication).  We selected the 
MMDP model in part because MMDPs can be solved efficiently 

(MMDPs are P-complete), and because, if necessary as the 
CHAMP project expands in scope, an MMDP can easily be 
expanded into a richer model. If ubiquitous communication were 
not assumed, the resulting problem could be viewed as a 
Decentralized Markov Decision Process (Dec-MDP), that is, a 
multi-agent MDP where each agent can fully observe its own 
state.  If partial rather than full observability of state were 
assumed, the problem can be represented as a Dececentralized 
Partially Observable Decision Process (Dec-POMDP).  Thus, the 
MMDP gives us a problem that can easily be solved for our initial 
implementations, but is expandable into richer problems for future 
implementations. 
In constructing the reward function, we had three broad goals in 
mind: 
(Goal 1)  We want to locate the evader, preferably quickly. Thus, 
at any given time, all other factors being equal, we prefer that the 
robots keep as much of the area as possible within sensor range. 

(Goal 2)  We want to keep the robots safe, and more importantly, 
we want to avoid a situation where a robot becomes disabled 
without knowing the reason.  Therefore, at any given time, all 
other factors being constant, we prefer that the robots keep each 
other within sensor range.  
(Goal 3)  We want to use a framework that is scalable to future 
work; in particular we may want to account for uncertainty in 
robot perception (sensor error, etc) as well as the result of robot 
actions. 

A reward function R was constructed so that behaviors that are 
most likely to find an evader on the map were rewarded. For our 
implementation, the reward was based on the current state, and we 
narrowed the broad goals above to reward the following specific 
behaviors:

1. The team should receive reward for keeping visible to 
each other. 

2. The team should receive reward for keeping a large 
portion of the map visible at each point in time. 

3. The team should receive penalty for each point unseen,
as a function of how long it has been unseen. 

4. The team should receive penalty for each point not 
visited, as a function of how long it has been unvisited. 

As a result, the following reward function was constructed. The 
reward equation drives the planned movement of the team. 

Reward = p + 3q - ∑vCt1(v) - ∑vDt2(v) where:   

p is the number of critical points visible 

q is the number of robots visible to each other 

t1(v) is the time since critical point v has been seen. (In 
the above we sum this over all the critical points). 

t2(v) is the time since critical point v has been visited. 
(In the above we sum this over all the critical points). 

The equation has taken into account the possible scenarios when 
there are a lot of critical points or a lot of robots. The penalty for 
each unexplored critical point grows with time.  Therefore, 
exploration dominates the equation and the robots will tend to 
split up. The term “q” offsets that behavior by rewarding the 
robots that remain in sight with each other. This trade-off gives us 
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opportunities for adjusting the team’s behavior given a mission 
objective or environmental constraint. The equation is also 
centered from the viewpoint of the team. It does not matter which 
robot explored an area last, as long as a member of the team has 
explored it. For our current effort, the robot team is assumed to be 
in perfect communication with one another.  The theoretical effect 
is that the robots can then be logically considered to be one 
centralized team rather than independent teams. 
There is a subtle difference in the last two terms, the difference 
between leaving a critical point unseen and leaving a critical point 
unvisited.  The difference roughly corresponds to a difference in 
granularity.  When critical points have been seen recently, this 
means that broad swaths of the map have been explored recently, 
so that a region has not gone unattended.  Still, an individual 
corner, only visible from one critical point, can be undetected.  
However, as the penalty for leaving a critical point unvisited
increases, this means that the agents will be increasingly 
incentivized to reach this point, and explore any hidden corners of 
the map. 
Although we will see in the Results section that we initially 
considered static evaders, the formulation is designed to 
encourage detection of both static and dynamic evaders.  Static 
evaders will be detected, because the penalty for unvisited points 
increases exponentially until they drive the reward function.  
Dynamic evaders will also tend to be detected, however, because 
the robots are encouraged to keep large amounts of the map 
visible at each time step.    

5. ADJUSTABLE AUTONOMY 
Our next objective was to augment our approach by investigating 
the application of adjustable autonomy to the human-multirobot 
team for the most effective execution of the mission of room 
clearing. The methods employed included: risk/benefit trade-offs, 
action durations, and expected utility [Schurr et. al 2009]. 

We have implemented adjustable autonomy, describing how 
humans can integrate with the robots. Our SME has noted that 
some missions are time critical, and speed is the utmost 
consideration, whereas other missions take place in a cordoned 
area and are not time critical.  We use these different types of 
scenarios to motivate different behaviors on the part of the robots.
In the latter case, we want use the additional time to be slow and 
methodical in the search, to especially avoid unsafe situations to 
the humans, and even to the robots, as time affords it. 
We have implemented adjustable autonomy by allowing the 
human on the team to adjust the parameters p,q,C, and D of the 
Reward equation. The parameters incorporated into the algorithm 
correspond to the parameters in the equation in the above section, 
and are named and defined as follows.  

Swarming Bonus:  Rewards robots for being within sight of each 
other.  

Visibility Reward:  Rewards robots for seeing large parts of the 
map at one time.  This is useful if targets can be moving, as the 
robots are vigilant to a large portion of the map.  

Unseen Penalty:  This induces the robots to explore the map, in 
broad swaths. Robots want to go to portions of the map that have 
not been seen recently.  

Unvisited Penalty:  As discussed in the previous section, the 
Unseen Penalty encourages exploration of broad swaths, the 
Unvisited Penalty encourages us to visit specific nodes. Since 
there may be some corners of the map that are only visible from 
one or two critical points, it is the Unvisited Penalty that drives 
exploration of the nooks and crannies of the map. 

When swarming and visibility are large, the agents are encouraged 
to remain visible to each other. Swarming is encouraged over 
exploration. When unseen and unvisited terms are large, agents 
will tend to explore. These parameters will be configurable in 
real-time by the human. A screenshot of the possible adjustments 
can be seen in Figure 2 below. The slider bars allow for fine tune 
adjustment and are intended for system designers to create preset 
profiles for particular situations and particular users. The drop 
down box for presets is intended to allow the pursuer to quickly 
change the behavior of the team as desired. 

Figure 2 

6. PROTOTYPE 
Our next objective was to build a prototype multirobot team 
simulation to prove the feasibility of our approach and to support 
future development and experimentation of CHAMP. The 
methods employed included: evaluation and selection of a 
simulation environment, a strategy for operating on multiple maps 
and processing critical points, the development of the 
coordination algorithm, and finally the coding of the robot agents. 
The first thing that was done was the evaluation of several 
simulation environments and the selection of Player/Stage as our 
target for the phase I implementation platform. The environments 
that were evaluated include: USARSim, MS Robotics Studio, 
Robot Operation System (ROS), and Player/Stage. The team 
selected Player/Stage because it met all of our requirements and 
transfers nicely to real robotic hardware. A Player/Stage overview 
will now be discussed. 

Player/Stage System Architecture

The Player/Stage system employs a client-server architecture 
which offers a level of abstraction for dealing with mobile robot 
and sensor hardware.  The ‘Player’ software is a network server 
that provides an interface for communicating with a robot’s 
sensors and actuators over a TCP/IP socket.  In most situations 
the server runs directly on the robot. 
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By employing a proxy system for individual drivers, such as a 
laser rangefinder or bumper switch, a client program can access 
the proxy sensor’s data (provided by a Player server) without 
needing to know what specific model or brand of hardware is 
being used under the hood.  This allows a client program to be 
hardware/robot agnostic.  Pieces of hardware or entire robots 
could be easily exchanged for others without having to rewrite 
any of the robot’s control code, as long as any substitute robot is 
capable of exposing the same interfaces (e.g. it has a laser, 
bumper, or whatever is required for the algorithms).  The ‘Stage’ 
software is a two-dimensional simulation environment capable of 
providing simulated drivers to a player server allowing users to 
test their algorithms without the need for real hardware. 

Player/Stage 
Unfortunately, ‘Stage’ can only run on Unix-based platforms.  In 
an effort to circumvent installing another operating system on the 
workstations (which run Windows XP), a virtualized Linux 
environment was created that runs on top of our existing operating 
system.   
The virtualized OS is Ubuntu 9.04, a modern, relatively easy to 
use Linux distribution.  The virtualization software used was 
VMWare’s Player (no associate with Player/Stage).  VMWare’s 
Player software is freely available at their website.  Ubuntu 
includes community-supported software repositories that include 
version 2.0.4 of Player/Stage which we installed on our default 
virtual image. 

Next, we developed a map processor that accepts a geographic 
layout in the Scalable Vector Graphics (SVG) format at the 
beginning of a mission and generates a series of vertices, solves 
for all the critical points, and then generates an adjacency graph 

from those points which becomes the input to the distributed 
coordination algorithm. The figure below explains our approach 
which is based on the already-described [Pellier, 2005]. Given a 
map, on start up, the program searches and identifies all vertices
as identified in the figure on the left. The program removes all 
vertices that don’t meet the criteria of the angle being greater than
180 degrees as identified in the middle figure. The final figure on 
the right is the constructed adjacency graph that informs the 
distributed coordination algorithm with the critical points in the 
area of interest.  

This approach to generating critical points does not require a map 
or preprocessing. For the current work, the assumption is that a 
map is available prior to the execution of a room clearing 
scenario. But, in future work or in an operational setting a robot 
scout could identify critical points and use that information as 
input into the adjacency graph generator that then informs the 
distributed coordination algorithm. 

Finally we developed a Player/Stage prototype that implements 
the distributed coordination algorithms while searching for a 
human evader with a given geographic area. The user interface 
contains several aspects. There is a high-level view of the map 
and the obstacles, humans, and robots traversing around map area. 
Each robot team member displays its path in its own separate 
window as it traverses the adjacency graph. The final component 
is the Adjustable Autonomy control which allows the human to 
control the behaviors of the robot team. 

7. RESULTS 
We present results that were gathered from the CHAMP 
simulation environment that includes:  Player/Stage, distributed 
control algorithms and an adjustable autonomy interface.  The 
results will be discussed in the following order:  (1) a graphical 
representation of the map, (2) the challenges of the map from the 
perspective of a human combat team, (3) the challenges of the 
map for the CHAMP distributed coordination algorithm. (4) 
CHAMP behaviors as executed, (5) timing information, and (6) 
the future impact or recommended changes to augment the  
CHAMP approach. 
On the last point, we note that from the point of view of the 
customer, this is an initial effort and that certain desirable room-
clearing goals have never been quantified.  Thus, analysis of 
simulated performance has served both to augment our own 
algorithms, as well as to help define goals for room clearing 
domain behaviors, to be quantified and elicited in future work. 

7.1 Example Map 1 
Example Map 1 was the first map that was developed to test and 
evaluate the CHAMP algorithms and prototype simulation.  This 
layout is a particularly challenging space for a human team to 
clear.  The top half of the map is more dangerous because of the 
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open spaces and doorways.  An evader can emerge, hide, ambush, 
or flee from multiple areas.  The top half of the map would be the 
first area that a human team would explore and clear. 

Example Map 1 
The CHAMP algorithm uses critical points to direct the robots on 
how to approach and explore the area. Critical points, because of 
their large angle, are the most exposed areas of the map.
Therefore, the algorithm places the robots in the most danger as 
they clear this space.  The observed behavior of the robotic team 
using the CHAMP system was to explore the top half of the map 
first, our subject matter expert informed us that this same behavior 
would be exhibited by a human team.  The robots move one at a 
time, like a human team, although the robots move much slower 
than a corresponding human team.  Table 1 highlights the 
differences in planning and search data given the adjustable 
autonomy strategies that were selected at startup of the given 
simulation run.  As expected, the swarming behavior 
configuration, where the robots earn more reward for keeping one 
another in sight, increased search time.  In the search scenario, the 
search time decreases as the robots are rewarded for searching 
broad areas and visiting specific nodes. 

Table 1:  Performance on Map #1 

AA Strategy Planning 
time (s)

Search time 
(s)

# Steps

Swarming 2.7 210.9 25

Search 2.6 144.7 14

An analysis of the robot paths suggests that in future work it may 
be valuable to include more than just the critical points of the map 
when planning a distributed coordination strategy.  The critical 
points are the most exposed, and therefore the most dangerous, 
and it may be beneficial to direct the robots to complementary 
points that achieve the search and swarm objectives but place the 
robotic team members in less danger. 

7.2 Example Map 2 
Example Map 2 was the second map that was developed to test 
and evaluate the CHAMP algorithms and prototype simulation.  
This layout was designed to be “maze-like”.  There are about 
equal areas to the left and to the right of the entry point.  The 
significant impact on the algorithm was that one robot continued 
to keep the right hand side of the map visible even after it was 
cleared and the human was not found. 

Example Map 2 
This behavior demonstrated to the team that it may be valuable to 
change the weight of the critical points once they are determined 
to be insignificant to the mission.  Once the area to the right has 
been searched, the robot should be free to move back to the entry 
point and allow a robot team member to progress further along the 
corridor to the left. 

Table 2:  Performance on Map #2 

AA Strategy Planning 
Time(s)

Search Time 
(s)

# steps

Swarming 13.3 249.5 32

Search 15.6 180.1 14

7.3 Example Map 3 
Example Map 3 was the third map that was developed to test and 
evaluate the CHAMP algorithms and prototype simulation.  This 
layout was designed as a hallway in a hotel with longer sight area 
and rooms on the left and the right to be cleared.  The significant 
impact on the algorithm was that it was easier for the robots to 
explore more areas while still keeping their teammates in sight.  
The planning time significantly increased because of the size of 
the map and the number of critical points. 

Table 3:  Performance on Map #3 

AA Strategy Planning 
Time (s)

Search Time 
(s)

# Steps

Swarming 54.9 135.2 8

Search 42.8 191.3 14
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Figure 3:  Example Map 3 

8. Hardware 
We have obtained 3 iRobot Create programmable robots.  The 
code for the algorithms described earlier in this paper can be 
directly ported to these robots.  Before selecting sensors, we first 
performed an analysis as to sensor packages for the robots.  
We evaluated a passive infrared motion sensor, a standard 
CCD/CMOS camera, an Infrared Camera, a Thermal Imaging 
Camera, and a laser rangefinder. 

Table 4:  Sensor Options 

Device Name Notes Cost
PIR motion sensor Senses moving 

warm bodies
< $100

CCD/CMOS 
Camera

Standard digital 
camera

$100+

Infrared Camera Similar to above, 
but infrared

$200+

Thermal Imaging 
Camera

Can see through 
heat-permeable 
barriers

$1000

Laser Rangefinder Uses a laser to scan 
at 10Hz, to 
construct a 2D or 
3D map of 
environment

$5000+

The passive sensor is the least expensive, but requires the host 
vehicle to be stationary when scanning.  Also stationary targets 
would be undetected.  The digital and camera is also inexpensive, 
its disadvantage is it may require sophisticated processing 
algorithms.  The Infrared (IR) Camera is also inexpensive, but due 
to its IR nature it does not detect color as well.  The thermal 
imaging camera is interesting because it can detect warm bodies, 

but it is moderately expensive and requires vision processing 
algorithms as well.  Finally, the laser rangefinder was the most 
expensive option we contemplated.  It allows the robots to 
construct a map of its environment by sweeping its laser.  The 
most obvious drawbacks are:  (1) 3D scanning requires a pan/tilt 
armature.  (2)  It is challenging to map the environment if there 
are fast-moving objects. 
As a result of the analysis, we instrumented our robots with a 
Sokuiki laser range finder.  Angular resolution on the laser is .352 
degrees, and power consumption is 2.5W.  We have also equipped 
the robots with small digital (visual) cameras, and are 
implementing detection algorithms on those cameras. 
For the operating environment, we built a small maze for these 
robots, to replicate in hardware the simulated problems from the 
results section.  The maze is shown below. 

Figure 4:  Maze in Aptima Robotics Laboratory 
Results from this paper will be replicated in the maze.

9. Future Steps 
We intend to push our future work in two directions.  First, we 
intend to continue moving our operating environment from 
software to hardware.  Second, we intend to augment our 
algorithms. 
On the latter point, we intend to augment the following aspects of 
the algorithm: 

1. Augment the Adjustable Autonomy and User Interface 
2. Simulate uncertainty of observations 
3. Simulate uncertainty of communication 

For the first item, it is important to construct a friendly User 
Interface, because the intention is to field mixed teams of humans 
and robots.  The human should be able to ascertain, through a 
PDA, the location of their robotic partners.  Furthermore the 
humans should be aware of the robots’ plans; the human should 
be able to anticipate each robot’s next action, since they will be 
acting as a team.  Similarly, a human user should be able to 
communicate her next actions to the robot team members in order 
to augment the plans, if so desired. 
On (2), we note that the MMDP model can be easily expanded 
into a Decentralized POMDP model.  The latter handles 
uncertainty by receiving an observation at every time step.  The 
observation correlates to a state, with an attached probability.  
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Through observations, the agents must reason about their current 
state.  It is likely that as our hardware implementation scales up, 
that the uncertainty of the robots will increase, and the richer Dec-
POMDP model will prove useful.   
Regarding (3), we will gradually scale up to environments where 
communication may not be instantaneous and ubiquitous.  In the 
current operating environment, it is trivial for robots to simply 
communicate location with each other in order to form centralized 
plans.  However, as we scale up, the robots will likely start 
making complex observations (in the form of image data) which 
may not be instantly communicable.  Therefore we will 
investigate models that include communication. 
At present, our work is sponsored through an SBIR Phase I grant,
with an invitation to apply for Phase II.  As the work continues, 
there are several possible commercial opportunities.  They can 
roughly be divided into DoD and non-DoD markets.  For the 
DoD, possible markets include Army Future Combat Systems and 
the Navy Combat Information Center.  The former would be 
interested in applications similar to the examples in this paper, 
and the latter may be interested in adapting the techniques for 
automated vehicles.  We estimate the market size for resulting 
products to be $15-50M/year for the Army and Navy.   
For non-DoD, we have identified three potential markets.  The 
first is Emergency Response and Law Enforcement, in scenarios 
similar to the examples.  The second non-DoD market is 
Hazardous Environments, where such systems could be used to 
control multiple devices to reach dangerous places, such as 
underwater locations or for oil exploration.  The benefit of the 
product would be improved safety for the user.  The third possible 
market is for health care systems, for tele-medicine or remote 
control of medical instruments.   

10. Conclusion 
In the CHAMP project, we addressed the problem of room 
clearing with a mixed team of humans and robots.  We developed 
code to pre-process a map and identify critical points on the map.  
We developed and coded an MMDP coordination algorithm for 
the team.  We augmented the algorithm with mechanisms for 
Adjustable Autonomy.  Then we developed a Player/Stage 
simulation prototype in which the algorithms could be tested, and 
we analyzed the results.  We have reported these results to the 
customer, and expect to continue this line of research in both 
CHAMP and in other projects. 

11. References 

[1] Bienstock, D., and Seymour, P.  Monotonicity in graph 
searching.  Journal of Algorithms, 12, 239-245 (1991). 

[2] Borie, R., Tovey, C., and Koenig, S.  Algorithms and 
Complexity Results for Pursuit-Evasion Problems.  
Proceedings of the Twenty-First International Joint 
Conference on Artificial Intelligence (IJCAI) (2009). 

[3] Boutilier, C.  Planning, learning and coordination in 
multiagent decision processes.  In Proceedings of the 
Conference on Theoretical Aspects of Rationality and 
Knowledge, 195-210 (1996). 

[4] Gerkey, B., Thrun, S., and Gordon, G.  Visibility-based 
pursuit-evasion with limited field of view.  In Proceedings of 
the National Conference on Artificial Intelligence (AAAI) 
(2004). 

[5] Isler, V., Kannan, S., and Khanna, S.  Randomized Pursuit-
Evasion with Local Visibility.  SIAM Journal on Discrete 
Mathematics, 20,  26-41 (2006).  

[6] LaPaugh, A.  Recontamination does not help  to search a 
graph.  Journal of the ACM, 40, 224-245 (1993). 

[7] Lee, J., Park, S., and Chwa, K.  Searching a polygonal room 
with a door by 1-searcher.  International Journal of 
Computational Geometry and Applications, 10, 201-220
(2000). 

[8] Military Operations on Urbanized Terrain (MOUT).  FM 90-
10.  Headquarters, Department of Army.  Washington, DC, 
15 (August 1979). 

[9] Parsons, T.  Pursuit-evasion in a graph.  Theory of 
Applications of Graphs, Lecture Notes in Mathematics, 426-
441 (1976). 

[10] Pellier, D., and Fiorino, H.  Coordinated exploration of 
unknown labyrinthine environments applied to the Pursuit-
Evasion Problem.  Proceedings of 4th International 
Conference on Autonomous Agents and Multiagent Systems 
(2005). 

[11] Schurr, N., Marecki, J., and Tamble, M.  Improving 
Adjustable Autonomy for Time-Critical Domains.  
Proceeding of 8th International Conference on Autonomous 
Agents and Multiagent Systems (2009). 

[12] Suzuki, I., and Yamashita, M.  Searching for a Mobile 
Intruder in a Polygonal Region.  SIAM J. Comp., 21, 863 
(1992). 

1754


