
Agent-Based Coordination of Human-Multirobot Teams in
Complex Environments

Alan Carlin1,2, Jeanine Ayers1, Jeff Rousseau1, Nathan Schurr1

 1Aptima Inc., 12 Gill Street, Suite 1400, Woburn, MA 01801
 2University of Massachusetts, 140 Governors Drive, Amherst, MA 01003-9264

ABSTRACT
Room clearing, in which building surveillance is conducted to
search for criminals, continues to be a dangerous and difficult
problem in urban settings, for both the military as well as for
police. In a typical setting, an unknown number of hostile forces
may be located in a building, and they may be armed.
Furthermore, there may be innocent civilians. The goal of the
friendly units is to enter the room and secure it, but without loss
of life of friendly forces, hostile forces, and most especially of
innocent civilians. It would be beneficial to allow robots to be a
part of the friendly team, however it is very challenging to have
robots that do not either slow down or obstruct their human
teammate. This is especially difficult since nearly all robots in use
by the military and police today are tele-operated. In this paper,
we describe work we have developed in cooperation with the
army, for the room clearing domain. We constructed an algorithm
whereby multiple agents, in the form of robots, can accomplish a
room clearing task. We augmented the agent algorithms to
introduce Adjustable Autonomy, allowing cooperation with
humans. We describe simulated results of the algorithm on
building maps, and furthermore we describe how we intend to
next conduct hardware tests, and eventual plans to field the
system. This agent-based solution has great potential to increase
the acceptance and leverage of robotics in complex environments.

Categories and Subject Descriptors
I.2.9 [Robotics]: Commercial Robots and Applications

General Terms
Algorithms, Human Factors

Keywords
Adjustable Autonomy, Markov Decision Process, MMDP, Room
Clearing

1. INTRODUCTION
Room clearing continues to be a difficult problem in urban
settings, for both the military as well as for police [Department of
Army 1979]. In a typical setting, an unknown number of hostile
forces may be located in a building, and they may be armed.
Furthermore, there may be innocent civilians. The goal of the

friendly units is to enter the room and secure it, but without loss
of life of friendly forces, hostile forces, and most especially
innocent civilians.

At present, room clearing tasks are performed by human teams
only. As part of a research effort called CHAMP (Coordinating
with Humans by Adjustable-autonomy for Multirobot Pursuit),
Aptima has constructed and simulated a method of coordinating
mixed teams, consisting of humans and robots, in order to
perform room clearing tasks. There are several challenges to this
task. First, the robots and the robot sensors need to be chosen.
Which sensors are chosen (laser, IR, RF) determines the
capabilities of the robots. Second, an exploration algorithm for a
multirobot team needs to be established, which guarantees that the
room is explored. Third, human and robot capabilities need to be
evaluated, and it needs to be determined how to best use the
robots in cooperation with humans for room clearing.

Figure 1 CHAMP architecture
Due to the recent work of researchers in the field of robotics and
artificial intelligence, there are promising opportunities for the
incorporation of semi-autonomous robotic entities within the
small-unit tactical team that may positively impact the day to day
effectiveness of the team. The future of Stability, Security,
Transition, and Reconstruction (SSTR), Fixed Site Security
(FSS), Cordon & Search (C&S), and Close Quarter Combat
(CQC) include a limited number of human ground forces
augmented by a team of robots capable of autonomous and
coordinated action. To achieve this vision, Aptima along with
Imprimis, Inc., acting as a Subject Matter Expert (SME), have
developed a prototype system for Coordinating with Humans by
Adjustable-autonomy for Multirobot Pursuit.
Figure 1 above shows the major technologies that were used in
developing the CHAMP prototype. The robot teams are controlled
by a distributed optimization algorithm, for the distributed
framework we selected a Multiagent Markov Decision Process
(MMDP). Adjustable Autonomy allows the degree of automated
control between the human and robot to be dynamic. The
environment was developed using knowledge elicitation sessions
with subject matter experts (SMEs) and guided the concept of

Cite as: Agent-Based Coordination of Human Robot Teams in Complex
Environments, Alan Carlin, Jeanine Ayers, Jeff Rousseau, Nathan Schurr
Proc. of 9th Int. Conf. on Autonomous Agents
and Multiagent Systems, van der Hoek, Kaminka, Lespérance, Luck and
Sen (eds.), May, 10–14, 2010, Toronto, Canada, pp.
Copyright © 2010, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

1747

1747-1754

operations for the prototype. The goal for the first phase of the
project, reported on in this paper, was to simulate simple
scenarios, and scale in complexity in later phases. Thus, we
assume a map of the building is known to the robots.

The CHAMP approach created a simulated team of robots
designed to traverse and cover all necessary terrains of the indoor
environment while collaborating and communicating with each
other as well as a human-in-the-loop. In addition, CHAMP
allowed for command and status updates from/to human users, to
allow both an understanding of the multirobot team’s actions and
a mechanism for adjusting them. The CHAMP approach
leveraged Adjustable Autonomy in order to allow the
coordination of the robotic team to become more dynamic and
adjust to the goals, demands, and constraints of the current
situation as it unfolds. Consequently, CHAMP introduces
distributed control strategies that are not static and singular, but
rather are represented by control policies that vary over time and
circumstances. By casting the human-robot interaction problem as
a problem of adjusting autonomy between human-automation
links, we are able to have the robot team choose how to explore
the map or allow the human to direct exploration. In determining
the coordination plan, the robots reason about unexplored areas
and patrol known areas while keeping the other teammates
(human or robot) in sight.
In this paper, we describe the details of the CHAMP approach.
This involves the construction of the MMDP and the
implementation of Adjustable Autonomy. It also includes the
construction of a simulation environment for the algorithms using
the Player/Stage robot simulation tool, the construction and
parsing of maps to run the simulation, and the evaluation of the
results of our algorithms based on the maps. Finally, we discuss
hardware that we have acquired and instrumented, and a plan for
commercialization of the eventual resulting product.
Before continuing, we want to first identify some aspects of
CHAMP’s industrial relevance, as the insights we gained from
customer calls may be of interest to the community:

Importance: The room clearing task is considered high
priority for the military as well as for police forces.
Furthermore, the cooperative human-robot team
algorithms can be expanded to a range of diverse
domains involving humans and robots, including rescue
scenarios and exploration scenarios.

Rationale: An agent-based approach to controlling
robots is a natural fit. Furthermore, we can integrate
research from the agent literature, including Multi-agent
Markov Decision Processes, literature on Adjustable
Autonomy, and pursuit-evasion literature.

Barriers: Customer enthusiasm is certainly not a
barrier. As our customer told us in our first customer
call, “If you build something we’ll field it tomorrow”.
Rather, it’s the sheer complexity of the problem. This is
why we think it wise to start with simpler models
containing more centralization and more certainty, then
to expand to more uncertain models.

Financial: Later in the paper we will provide an
overview of specific market estimates. We reported on
this information to the army. Although it is difficult to
provide exact figures for specific markets, we anticipate

a large amount of interest provided we demonstrate
feasibility in hardware (interest for simulation results is
currently high, but is more subject to change). The key
challenge was to obtain hardware within development
budgets, but which can also demonstrate agent
algorithms. Fortunately, options are increasing in
quantity, quality, and affordability for both robots and
robot sensors. We feel that the Create platform from
iRobot provides a nice tradeoff of features for expense.

2. RELATED WORK
Our problem is similar to the “pursuit-evasion” problem in the
literature [Parsons, 1976]. In this problem, an intruder hides and
must be found by a pursuer. The problem can be formulated as a
graph, where pursuers and evaders are located at vertices and
move along the edges at each step, and there is zero visibility . It
can also be formulated as a search through a polygon region
[Suzuki & Yamashita, 1992].
In the graph-search case, where adjacent nodes are visible, Isler et
al show that the intruder can be caught by multiple pursuers with
high probability (Isler et al, 2004). In recent work, Borie et al
build upon prior solutions where all edge widths are assumed to
be one, and generalize the results to graphs with unit-width
arbitrary length [Borie, 2009]. Additional graph-theoretic
approaches are numerous, including [Bienstock et al, 1991] and
[Lapaugh, 1993]. The search of a polygon region has inspired
approaches in the field of robotics. Some work is concerned with
robots with a detection beam, monitoring an exit [Gerkey et al,
2004], [Lee et al, 2000].
The work most similar to ours is Pellier and Fiorino, in which the
authors define an approach in a simulated 2D polygon
environment where robots are assumed to have omni-directional
sensors exploring an unknown environment [Pellier & Fiorino,
2005]. The authors construct an algorithm, using a construct
called critical points , whereby a robot team explores the area, and
robots are added to the team until it can be assured that any
evader is found. In contrast to this work, we assume a small
number of robots on our team, as will be shown in the next
section.

3. PROBLEM ENVIRONMENT
The full problem is somewhat difficult for a graph-theoretic
technique. If one were to represent the complete problem as a
graph, each pixel would represent a graph vertex. Furthermore,
visibility would not be limited to adjacent graph nodes, rather, it
would be determined by the location of the obstacles. Thus
visibility rules would differ for each map. The resulting graph
problem is intractable.
In CHAMP, we find a meaningful subgraph that captures the
important elements of the full map. We do this by leveraging
critical points. We begin with an empty graph, G=(V,E). The
map is examined for vertices (intersections of lines on the graph).
A vertex is determined to be critical if and only if the angle
formed by its adjacent edges is greater than . Each of these
critical vertices of the map are added to the graph G. It can be
proved that all reachable areas on the map can be viewed from
some critical vertex.

1748

Once all the vertices are added to G, we examine them. For each
critical vertex, we examine which other critical vertices are
reachable in a straight line, without encountering a barrier. For
each vertex u, for each vertex v that is reachable from it, we add
edge (u,v) to G.

4. MMDP FRAMEWORK
We solve the problem described above by using the graph to form
an MMDP [Boutilier, 1996]. Below we describe both an MMDP
and our implementation of it. We defined the MMDP is as tuple
<Ag,S,A,P, R,T> where:

Ag is a finite set of agents indexed 1..n

S = <S1,S2,…> is the state space. A joint state is a
finite set of states, one state for each agent. That is,
agent 1’s state is in S1, agent 2’s state is in S2, etc. The
state space S is specified by all combinations of the
individual robot states. For this project, we consider a
robot’s state its location. In order to limit the size of the
state space, only the “critical points” on the map were
considered. Thus a state such as <1,3,5> would mean
that the first robot is at location 1, the second robot is at
location 3, and the third robot is at location 5. The
benefit of the critical point framework is that every
point on the map is visible from at least one of the
critical points.

A = <A1,A2…> is the action space. A joint action is a
finite set of actions, one action for each agent. Thus,
agent 1 takes an action a1, selected from the set of
possible actions A1. Agent 2 takes action a2, etc. All
actions are taken simultaneously. We considered robot
movement to be the action. An example action is
<MoveToLocation2, Stay, Stay>, stating that robot 1
moves to location 2 and the other two robots stay in
place.

P = SxAxS is the probability matrix governing state
changes. For example, if the state is <1,3,5>, as
described above, and the action is <MoveToLocation2,
Stay, Stay>, the probability matrix might say that there
is a 90% chance that robot 1 moves to location 2, and a
10% chance that it fails, while there is a 100% chance
that robot 2 and robot 3 stay in the same place.

R = SxA -> R is the reward for being in joint state S
and taking joint action A. Further description is below.

T is the horizon of the problem.
An MMDP can be viewed as having the same transition rules as n
separate MDPs, where n is the number of agents. Each agent has
its own set of states, and its own defined transition function.
Rewards, however, are joint, a joint reward is received for the
state of all the agents. In order to enforce a desirable property,
that only one robot be allowed to move at a time, we assigned an
infinite negative reward for joint actions where more than one
robot moves to a different location on the same step.
In an MMDP model, state is fully observable. Thus, each agent
can fully observe its own state, as well as the states of the other
agents (after reviewing our robots and this problem, we found it
most realistic to assume full communication). We selected the
MMDP model in part because MMDPs can be solved efficiently

(MMDPs are P-complete), and because, if necessary as the
CHAMP project expands in scope, an MMDP can easily be
expanded into a richer model. If ubiquitous communication were
not assumed, the resulting problem could be viewed as a
Decentralized Markov Decision Process (Dec-MDP), that is, a
multi-agent MDP where each agent can fully observe its own
state. If partial rather than full observability of state were
assumed, the problem can be represented as a Dececentralized
Partially Observable Decision Process (Dec-POMDP). Thus, the
MMDP gives us a problem that can easily be solved for our initial
implementations, but is expandable into richer problems for future
implementations.
In constructing the reward function, we had three broad goals in
mind:
(Goal 1) We want to locate the evader, preferably quickly. Thus,
at any given time, all other factors being equal, we prefer that the
robots keep as much of the area as possible within sensor range.

(Goal 2) We want to keep the robots safe, and more importantly,
we want to avoid a situation where a robot becomes disabled
without knowing the reason. Therefore, at any given time, all
other factors being constant, we prefer that the robots keep each
other within sensor range.
(Goal 3) We want to use a framework that is scalable to future
work; in particular we may want to account for uncertainty in
robot perception (sensor error, etc) as well as the result of robot
actions.

A reward function R was constructed so that behaviors that are
most likely to find an evader on the map were rewarded. For our
implementation, the reward was based on the current state, and we
narrowed the broad goals above to reward the following specific
behaviors:

1. The team should receive reward for keeping visible to
each other.

2. The team should receive reward for keeping a large
portion of the map visible at each point in time.

3. The team should receive penalty for each point unseen,
as a function of how long it has been unseen.

4. The team should receive penalty for each point not
visited, as a function of how long it has been unvisited.

As a result, the following reward function was constructed. The
reward equation drives the planned movement of the team.

Reward = p + 3q - ∑vCt1(v) - ∑vDt2(v) where:

p is the number of critical points visible

q is the number of robots visible to each other

t1(v) is the time since critical point v has been seen. (In
the above we sum this over all the critical points).

t2(v) is the time since critical point v has been visited.
(In the above we sum this over all the critical points).

The equation has taken into account the possible scenarios when
there are a lot of critical points or a lot of robots. The penalty for
each unexplored critical point grows with time. Therefore,
exploration dominates the equation and the robots will tend to
split up. The term “q” offsets that behavior by rewarding the
robots that remain in sight with each other. This trade-off gives us

1749

opportunities for adjusting the team’s behavior given a mission
objective or environmental constraint. The equation is also
centered from the viewpoint of the team. It does not matter which
robot explored an area last, as long as a member of the team has
explored it. For our current effort, the robot team is assumed to be
in perfect communication with one another. The theoretical effect
is that the robots can then be logically considered to be one
centralized team rather than independent teams.
There is a subtle difference in the last two terms, the difference
between leaving a critical point unseen and leaving a critical point
unvisited. The difference roughly corresponds to a difference in
granularity. When critical points have been seen recently, this
means that broad swaths of the map have been explored recently,
so that a region has not gone unattended. Still, an individual
corner, only visible from one critical point, can be undetected.
However, as the penalty for leaving a critical point unvisited
increases, this means that the agents will be increasingly
incentivized to reach this point, and explore any hidden corners of
the map.
Although we will see in the Results section that we initially
considered static evaders, the formulation is designed to
encourage detection of both static and dynamic evaders. Static
evaders will be detected, because the penalty for unvisited points
increases exponentially until they drive the reward function.
Dynamic evaders will also tend to be detected, however, because
the robots are encouraged to keep large amounts of the map
visible at each time step.

5. ADJUSTABLE AUTONOMY
Our next objective was to augment our approach by investigating
the application of adjustable autonomy to the human-multirobot
team for the most effective execution of the mission of room
clearing. The methods employed included: risk/benefit trade-offs,
action durations, and expected utility [Schurr et. al 2009].

We have implemented adjustable autonomy, describing how
humans can integrate with the robots. Our SME has noted that
some missions are time critical, and speed is the utmost
consideration, whereas other missions take place in a cordoned
area and are not time critical. We use these different types of
scenarios to motivate different behaviors on the part of the robots.
In the latter case, we want use the additional time to be slow and
methodical in the search, to especially avoid unsafe situations to
the humans, and even to the robots, as time affords it.
We have implemented adjustable autonomy by allowing the
human on the team to adjust the parameters p,q,C, and D of the
Reward equation. The parameters incorporated into the algorithm
correspond to the parameters in the equation in the above section,
and are named and defined as follows.

Swarming Bonus: Rewards robots for being within sight of each
other.

Visibility Reward: Rewards robots for seeing large parts of the
map at one time. This is useful if targets can be moving, as the
robots are vigilant to a large portion of the map.

Unseen Penalty: This induces the robots to explore the map, in
broad swaths. Robots want to go to portions of the map that have
not been seen recently.

Unvisited Penalty: As discussed in the previous section, the
Unseen Penalty encourages exploration of broad swaths, the
Unvisited Penalty encourages us to visit specific nodes. Since
there may be some corners of the map that are only visible from
one or two critical points, it is the Unvisited Penalty that drives
exploration of the nooks and crannies of the map.

When swarming and visibility are large, the agents are encouraged
to remain visible to each other. Swarming is encouraged over
exploration. When unseen and unvisited terms are large, agents
will tend to explore. These parameters will be configurable in
real-time by the human. A screenshot of the possible adjustments
can be seen in Figure 2 below. The slider bars allow for fine tune
adjustment and are intended for system designers to create preset
profiles for particular situations and particular users. The drop
down box for presets is intended to allow the pursuer to quickly
change the behavior of the team as desired.

Figure 2

6. PROTOTYPE
Our next objective was to build a prototype multirobot team
simulation to prove the feasibility of our approach and to support
future development and experimentation of CHAMP. The
methods employed included: evaluation and selection of a
simulation environment, a strategy for operating on multiple maps
and processing critical points, the development of the
coordination algorithm, and finally the coding of the robot agents.
The first thing that was done was the evaluation of several
simulation environments and the selection of Player/Stage as our
target for the phase I implementation platform. The environments
that were evaluated include: USARSim, MS Robotics Studio,
Robot Operation System (ROS), and Player/Stage. The team
selected Player/Stage because it met all of our requirements and
transfers nicely to real robotic hardware. A Player/Stage overview
will now be discussed.

Player/Stage System Architecture

The Player/Stage system employs a client-server architecture
which offers a level of abstraction for dealing with mobile robot
and sensor hardware. The ‘Player’ software is a network server
that provides an interface for communicating with a robot’s
sensors and actuators over a TCP/IP socket. In most situations
the server runs directly on the robot.

1750

By employing a proxy system for individual drivers, such as a
laser rangefinder or bumper switch, a client program can access
the proxy sensor’s data (provided by a Player server) without
needing to know what specific model or brand of hardware is
being used under the hood. This allows a client program to be
hardware/robot agnostic. Pieces of hardware or entire robots
could be easily exchanged for others without having to rewrite
any of the robot’s control code, as long as any substitute robot is
capable of exposing the same interfaces (e.g. it has a laser,
bumper, or whatever is required for the algorithms). The ‘Stage’
software is a two-dimensional simulation environment capable of
providing simulated drivers to a player server allowing users to
test their algorithms without the need for real hardware.

Player/Stage
Unfortunately, ‘Stage’ can only run on Unix-based platforms. In
an effort to circumvent installing another operating system on the
workstations (which run Windows XP), a virtualized Linux
environment was created that runs on top of our existing operating
system.
The virtualized OS is Ubuntu 9.04, a modern, relatively easy to
use Linux distribution. The virtualization software used was
VMWare’s Player (no associate with Player/Stage). VMWare’s
Player software is freely available at their website. Ubuntu
includes community-supported software repositories that include
version 2.0.4 of Player/Stage which we installed on our default
virtual image.

Next, we developed a map processor that accepts a geographic
layout in the Scalable Vector Graphics (SVG) format at the
beginning of a mission and generates a series of vertices, solves
for all the critical points, and then generates an adjacency graph

from those points which becomes the input to the distributed
coordination algorithm. The figure below explains our approach
which is based on the already-described [Pellier, 2005]. Given a
map, on start up, the program searches and identifies all vertices
as identified in the figure on the left. The program removes all
vertices that don’t meet the criteria of the angle being greater than
180 degrees as identified in the middle figure. The final figure on
the right is the constructed adjacency graph that informs the
distributed coordination algorithm with the critical points in the
area of interest.

This approach to generating critical points does not require a map
or preprocessing. For the current work, the assumption is that a
map is available prior to the execution of a room clearing
scenario. But, in future work or in an operational setting a robot
scout could identify critical points and use that information as
input into the adjacency graph generator that then informs the
distributed coordination algorithm.

Finally we developed a Player/Stage prototype that implements
the distributed coordination algorithms while searching for a
human evader with a given geographic area. The user interface
contains several aspects. There is a high-level view of the map
and the obstacles, humans, and robots traversing around map area.
Each robot team member displays its path in its own separate
window as it traverses the adjacency graph. The final component
is the Adjustable Autonomy control which allows the human to
control the behaviors of the robot team.

7. RESULTS
We present results that were gathered from the CHAMP
simulation environment that includes: Player/Stage, distributed
control algorithms and an adjustable autonomy interface. The
results will be discussed in the following order: (1) a graphical
representation of the map, (2) the challenges of the map from the
perspective of a human combat team, (3) the challenges of the
map for the CHAMP distributed coordination algorithm. (4)
CHAMP behaviors as executed, (5) timing information, and (6)
the future impact or recommended changes to augment the
CHAMP approach.
On the last point, we note that from the point of view of the
customer, this is an initial effort and that certain desirable room-
clearing goals have never been quantified. Thus, analysis of
simulated performance has served both to augment our own
algorithms, as well as to help define goals for room clearing
domain behaviors, to be quantified and elicited in future work.

7.1 Example Map 1
Example Map 1 was the first map that was developed to test and
evaluate the CHAMP algorithms and prototype simulation. This
layout is a particularly challenging space for a human team to
clear. The top half of the map is more dangerous because of the

1751

open spaces and doorways. An evader can emerge, hide, ambush,
or flee from multiple areas. The top half of the map would be the
first area that a human team would explore and clear.

Example Map 1
The CHAMP algorithm uses critical points to direct the robots on
how to approach and explore the area. Critical points, because of
their large angle, are the most exposed areas of the map.
Therefore, the algorithm places the robots in the most danger as
they clear this space. The observed behavior of the robotic team
using the CHAMP system was to explore the top half of the map
first, our subject matter expert informed us that this same behavior
would be exhibited by a human team. The robots move one at a
time, like a human team, although the robots move much slower
than a corresponding human team. Table 1 highlights the
differences in planning and search data given the adjustable
autonomy strategies that were selected at startup of the given
simulation run. As expected, the swarming behavior
configuration, where the robots earn more reward for keeping one
another in sight, increased search time. In the search scenario, the
search time decreases as the robots are rewarded for searching
broad areas and visiting specific nodes.

Table 1: Performance on Map #1

AA Strategy Planning
time (s)

Search time
(s)

Steps

Swarming 2.7 210.9 25

Search 2.6 144.7 14

An analysis of the robot paths suggests that in future work it may
be valuable to include more than just the critical points of the map
when planning a distributed coordination strategy. The critical
points are the most exposed, and therefore the most dangerous,
and it may be beneficial to direct the robots to complementary
points that achieve the search and swarm objectives but place the
robotic team members in less danger.

7.2 Example Map 2
Example Map 2 was the second map that was developed to test
and evaluate the CHAMP algorithms and prototype simulation.
This layout was designed to be “maze-like”. There are about
equal areas to the left and to the right of the entry point. The
significant impact on the algorithm was that one robot continued
to keep the right hand side of the map visible even after it was
cleared and the human was not found.

Example Map 2
This behavior demonstrated to the team that it may be valuable to
change the weight of the critical points once they are determined
to be insignificant to the mission. Once the area to the right has
been searched, the robot should be free to move back to the entry
point and allow a robot team member to progress further along the
corridor to the left.

Table 2: Performance on Map #2

AA Strategy Planning
Time(s)

Search Time
(s)

steps

Swarming 13.3 249.5 32

Search 15.6 180.1 14

7.3 Example Map 3
Example Map 3 was the third map that was developed to test and
evaluate the CHAMP algorithms and prototype simulation. This
layout was designed as a hallway in a hotel with longer sight area
and rooms on the left and the right to be cleared. The significant
impact on the algorithm was that it was easier for the robots to
explore more areas while still keeping their teammates in sight.
The planning time significantly increased because of the size of
the map and the number of critical points.

Table 3: Performance on Map #3

AA Strategy Planning
Time (s)

Search Time
(s)

Steps

Swarming 54.9 135.2 8

Search 42.8 191.3 14

1752

Figure 3: Example Map 3

8. Hardware
We have obtained 3 iRobot Create programmable robots. The
code for the algorithms described earlier in this paper can be
directly ported to these robots. Before selecting sensors, we first
performed an analysis as to sensor packages for the robots.
We evaluated a passive infrared motion sensor, a standard
CCD/CMOS camera, an Infrared Camera, a Thermal Imaging
Camera, and a laser rangefinder.

Table 4: Sensor Options

Device Name Notes Cost
PIR motion sensor Senses moving

warm bodies
< $100

CCD/CMOS
Camera

Standard digital
camera

$100+

Infrared Camera Similar to above,
but infrared

$200+

Thermal Imaging
Camera

Can see through
heat-permeable
barriers

$1000

Laser Rangefinder Uses a laser to scan
at 10Hz, to
construct a 2D or
3D map of
environment

$5000+

The passive sensor is the least expensive, but requires the host
vehicle to be stationary when scanning. Also stationary targets
would be undetected. The digital and camera is also inexpensive,
its disadvantage is it may require sophisticated processing
algorithms. The Infrared (IR) Camera is also inexpensive, but due
to its IR nature it does not detect color as well. The thermal
imaging camera is interesting because it can detect warm bodies,

but it is moderately expensive and requires vision processing
algorithms as well. Finally, the laser rangefinder was the most
expensive option we contemplated. It allows the robots to
construct a map of its environment by sweeping its laser. The
most obvious drawbacks are: (1) 3D scanning requires a pan/tilt
armature. (2) It is challenging to map the environment if there
are fast-moving objects.
As a result of the analysis, we instrumented our robots with a
Sokuiki laser range finder. Angular resolution on the laser is .352
degrees, and power consumption is 2.5W. We have also equipped
the robots with small digital (visual) cameras, and are
implementing detection algorithms on those cameras.
For the operating environment, we built a small maze for these
robots, to replicate in hardware the simulated problems from the
results section. The maze is shown below.

Figure 4: Maze in Aptima Robotics Laboratory
Results from this paper will be replicated in the maze.

9. Future Steps
We intend to push our future work in two directions. First, we
intend to continue moving our operating environment from
software to hardware. Second, we intend to augment our
algorithms.
On the latter point, we intend to augment the following aspects of
the algorithm:

1. Augment the Adjustable Autonomy and User Interface
2. Simulate uncertainty of observations
3. Simulate uncertainty of communication

For the first item, it is important to construct a friendly User
Interface, because the intention is to field mixed teams of humans
and robots. The human should be able to ascertain, through a
PDA, the location of their robotic partners. Furthermore the
humans should be aware of the robots’ plans; the human should
be able to anticipate each robot’s next action, since they will be
acting as a team. Similarly, a human user should be able to
communicate her next actions to the robot team members in order
to augment the plans, if so desired.
On (2), we note that the MMDP model can be easily expanded
into a Decentralized POMDP model. The latter handles
uncertainty by receiving an observation at every time step. The
observation correlates to a state, with an attached probability.

1753

Through observations, the agents must reason about their current
state. It is likely that as our hardware implementation scales up,
that the uncertainty of the robots will increase, and the richer Dec-
POMDP model will prove useful.
Regarding (3), we will gradually scale up to environments where
communication may not be instantaneous and ubiquitous. In the
current operating environment, it is trivial for robots to simply
communicate location with each other in order to form centralized
plans. However, as we scale up, the robots will likely start
making complex observations (in the form of image data) which
may not be instantly communicable. Therefore we will
investigate models that include communication.
At present, our work is sponsored through an SBIR Phase I grant,
with an invitation to apply for Phase II. As the work continues,
there are several possible commercial opportunities. They can
roughly be divided into DoD and non-DoD markets. For the
DoD, possible markets include Army Future Combat Systems and
the Navy Combat Information Center. The former would be
interested in applications similar to the examples in this paper,
and the latter may be interested in adapting the techniques for
automated vehicles. We estimate the market size for resulting
products to be $15-50M/year for the Army and Navy.
For non-DoD, we have identified three potential markets. The
first is Emergency Response and Law Enforcement, in scenarios
similar to the examples. The second non-DoD market is
Hazardous Environments, where such systems could be used to
control multiple devices to reach dangerous places, such as
underwater locations or for oil exploration. The benefit of the
product would be improved safety for the user. The third possible
market is for health care systems, for tele-medicine or remote
control of medical instruments.

10. Conclusion
In the CHAMP project, we addressed the problem of room
clearing with a mixed team of humans and robots. We developed
code to pre-process a map and identify critical points on the map.
We developed and coded an MMDP coordination algorithm for
the team. We augmented the algorithm with mechanisms for
Adjustable Autonomy. Then we developed a Player/Stage
simulation prototype in which the algorithms could be tested, and
we analyzed the results. We have reported these results to the
customer, and expect to continue this line of research in both
CHAMP and in other projects.

11. References

[1] Bienstock, D., and Seymour, P. Monotonicity in graph
searching. Journal of Algorithms, 12, 239-245 (1991).

[2] Borie, R., Tovey, C., and Koenig, S. Algorithms and
Complexity Results for Pursuit-Evasion Problems.
Proceedings of the Twenty-First International Joint
Conference on Artificial Intelligence (IJCAI) (2009).

[3] Boutilier, C. Planning, learning and coordination in
multiagent decision processes. In Proceedings of the
Conference on Theoretical Aspects of Rationality and
Knowledge, 195-210 (1996).

[4] Gerkey, B., Thrun, S., and Gordon, G. Visibility-based
pursuit-evasion with limited field of view. In Proceedings of
the National Conference on Artificial Intelligence (AAAI)
(2004).

[5] Isler, V., Kannan, S., and Khanna, S. Randomized Pursuit-
Evasion with Local Visibility. SIAM Journal on Discrete
Mathematics, 20, 26-41 (2006).

[6] LaPaugh, A. Recontamination does not help to search a
graph. Journal of the ACM, 40, 224-245 (1993).

[7] Lee, J., Park, S., and Chwa, K. Searching a polygonal room
with a door by 1-searcher. International Journal of
Computational Geometry and Applications, 10, 201-220
(2000).

[8] Military Operations on Urbanized Terrain (MOUT). FM 90-
10. Headquarters, Department of Army. Washington, DC,
15 (August 1979).

[9] Parsons, T. Pursuit-evasion in a graph. Theory of
Applications of Graphs, Lecture Notes in Mathematics, 426-
441 (1976).

[10] Pellier, D., and Fiorino, H. Coordinated exploration of
unknown labyrinthine environments applied to the Pursuit-
Evasion Problem. Proceedings of 4th International
Conference on Autonomous Agents and Multiagent Systems
(2005).

[11] Schurr, N., Marecki, J., and Tamble, M. Improving
Adjustable Autonomy for Time-Critical Domains.
Proceeding of 8th International Conference on Autonomous
Agents and Multiagent Systems (2009).

[12] Suzuki, I., and Yamashita, M. Searching for a Mobile
Intruder in a Polygonal Region. SIAM J. Comp., 21, 863
(1992).

1754

